Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

Rev 1.8 CRM08 22/06/2021

CONTINUOUS INTERNAL EVALUATION- 2

Sub: Computer Graphics & S Code: 18CS62 Dept: CSE Sem / Div: 6th A & B Visualization Time: 3:00PM-4:30PM Max Marks: 50 Date: 24/06/2021 Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

_
0

	Q N	Questions	Marks	RBT	COs			
	PART A							
1	a	What is clipping? Explain with example the Sutherland – Hodgman polygon clipping algorithm.	9	L2	СОЗ			
	b	Define color model. With neat diagram explain RGB and CMY model. Explain the transformation between CMY and RGB color spaces.	8	L2	СОЗ			
		With the help of openGL statements and diagram explain illumination and shading model	8	L2	CO5			
	OR							
2		Define clipping. Briefly explain Cohen – Sutherland line clipping without code. Discuss four cases.	9	L2	CO3			
	b	Define transformation matrix to rotate a 3D object about an axis that is parallel to one of the co – ordinate axes.	8	L2	СОЗ			
	c	Explain Specular Reflection and Phong model.	8	L2	CO5			
	PART B							
3	a	Design a transformation matrix for window to viewport transformation and explain how reshape function (glutReshapeFunc) works in openGL programming.	8	L2	СОЗ			
		Explain general two dimensional pivot point rotation and derive the composite matrix.	8	L2	CO2			
	c	Give the reasons to convert transformation matrix to homogeneous coordinate representation and show the process of conversion. Shear the polygon $A(1, 1)$, $B(3, 1)$, $C(3, 3)$, $D(2, 4)$, $E(1, 3)$ along x – axis with a shearing factor of 0.2.	9	L2	CO2			
	OR							
4	-	Explain the different types of light sources supported by openGL.	8	L2	CO3			
	-	Explain two dimensional viewing transformation pipeline.	8	L2	CO2			
	c	Develop homogeneous transformation matrix to rotate an object with respect to a pivot point. For the triangle A(3, 2), B(6, 2) and C(6, 6) rotate it in anticlockwise direction by 90 degree keeping A(3, 2) fixed, draw the new polygon.	9	L2	CO2			